Reg. No:					

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year II Semester Regular Examinations May 2019 GEOTECHNICAL ENGINEERING-II

	GEOTECHNICAL ENGINEERING-II							
	(Civil Engineering)							
Time: 3 hours Max. Marks: 60								
	(Answer all Five Units $5 \times 12 = 60$ Marks)							
	UNIT-I							
1	a With a neat sketch explain the process of advancing wash boring. What are the							
	limitations of wash boring?	8M						
	b Write short notes on the following:							
	i). Rotary drilling ii). Percussion drilling	4M						
OR								
2	a Describe the construct of spilt spoon sampler.	7M						
	b Explain how the sample is extracted using split spoon sampler UNIT-II	5M						
3	a A new canal is excavated to a depth of 5 m below ground level, through a soil							
	having the following characteristics: $c = 14$ kN/m3; $\Phi = 15$ o; $e = 0.8$ and $G = 2.70$.							
	The slope of banks is 1 in 1. Calculate the factor of safety with respect to cohesion							
	when the canal runs full. If it is suddenly and completely emptied, what will be the	0.1						
	factor of safety?	6M						
	b What is stability number? What is its utility in the analysis of stability of slopes?	6M						
4	OR							
4	a A cutting is to be made in a soil with slope of 30o to the horizontal and a depth of 15 m. the propertied of soil are: $\gamma = 20 \text{ kN/m}^3$; $\Phi = 15^\circ$ and $c = 25 \text{ kN/m}^2$. Determine							
	the factor of safety of the slope against slip, assuming friction and cohesion to be							
	mobilized to the same proportion of their ultimate values.	6M						
	b Describe Bishop's simplified method	6M						
	UNIT-III	01/1						
5	a A vertical retaining wall 10 m high supports a cohesionless fill with $\gamma = 1.8$ g/cm ³ .							
	The upper surface of the fill raises from the crest of the wall at tan angle of 20° with							
	the horizontal. Assuming $\Phi = 30^{\circ}$ and $\delta = 20^{\circ}$, determine the total active earth	53. f						
	pressure using the analytical approach of Coulomb	7M						
	b What are the assumptions of Rankine's theory? OR	5M						
6	a A wall 5.4 m high, retains sand. If the loose state the sand has a void ratio of 0.63							
U	and $\Phi = 27^{\circ}$, while the sense state, the corresponding values of void ratio and Φ are							
	0.36 and 45° respectively. Compare the ratio of active and passive earth pressure in							
	the two cases, assuming $G = 2.64$.	7M						
	b What are the assumptions in Coulomb's theory	5M						
	•							

5M

UNIT-IV

a A footing 2 m square is laid at a depth of 1.3 m below the ground surface. Determine the net ultimate bearing capacity suing IS code method. Unit weight of soil is 20 kN/m3, angle of internal friction is 30° and the soil is cohesion less. Also estimate the ultimate bearing capacity of the footing when water table raises to the ground surface 7M **b** What are different types of shallow foundations? 5M a What are the points to be considered while fixing the depth of footing? Discuss Rankine's formula for the minimum depth. 6M **b** . Define the following i)Net safe settlement pressure ii). Net allowable bearing pressure 6M **UNIT-V** a A 30 cm diameter concrete pile is driven into a homogeneous consolidated clay deposit (Cu = 40 kN/m2, $\alpha = 0.7$). If the embedded length is 10 m, estimate the safe load if factor of safety is 2.5. 7M **b** Discuss how ultimate load is given by Engineering News Record Formula 5M 10 a A square group of 9 piles was driven into soft clay extending to a large depth. The diameter and length of the piles were 30 cm and 9 m respectively. If the unconfined compression strength of the clay is 9 t/m2, and the pile spacing is 90 cm centre to centre, what is the capacity of the group? Assume a factor of safety of 2.5 and adhesion factor of 0.75. 7M

*** END **

b How do you estimate group capacity of piles in clay?